

Performance Evaluation & SON Aspects of Vertical Sectorisation in a Realistic LTE Network Environment

IWSON 2014 - Barcelona 26 August 2014

Konstantinos Trichias, Remco Litjens, Zwi Altman, Abdoulaye Tall, Pradeepa Ramachandra

- Introduction
- Vertical Sectorisation
- Modelling & Simulation Scenarios
- Numerical Results & Analysis
- SON Function Analytical Model
- SON Function Calibration
- Conclusions & Further Steps

Introduction

- Motivation
 - Increasing traffic demand in mobile networks
 - New systems & features for higher network capacity & improved performance

Active Antenna Systems (AAS)

- Improved network performance
- Reduced costs
- Long-term sustainability

Vertical Sectorisation (VS)

- Increased network capacity
- Improved UE performance

Self-Organizing Networks (SON)

- Intelligent networks
- Multi-layer & multi-RAT functionality
- High degree of flexibility
- High degree of adaptability
 - Spatial traffic variations
 - Temporal traffic variations

How to combine VS with SON to maximize gains and optimize performance?

- Introduction
- Vertical Sectorisation
- Modelling & Simulation Scenarios
- Numerical Results & Analysis
- SON Function Analytical Model
- SON Function Calibration
- Conclusions & Further Steps

Vertical Sectorisation

- VS is performed by splitting the antenna beam serving one cell, into two beams with different electrical tilts θ_e (split in the vertical plane)
- The mechanical tilt of the antenna remains the same
- The former cell is split into two new cells / sectors serving different areas
- The two sectors have their own physical cell IDs
- Full reuse of the available spectral resources
- Sharing of the total transmit power available for the cell (P_{total} = P_{inner} + P_{outer})

Vertical Sectorisation

Pros

- Spatial reuse of resources
- Reduced inter-cell interference (reduced Tx power)
- Focused beam on high traffic demand area (increased SINR)

Cons

- Reduced Tx power per sector
- Increased inter-cell interference (additional cell)

- Introduction
- Vertical Sectorisation
- Modelling & Simulation Scenarios
- Numerical Results & Analysis
- SON Function Analytical Model
- SON Function Calibration
- Conclusions & Further Steps

Modelling & Simulation Scenarios

- Realistic LTE network (Hannover, Germany)
- Advanced AAS model based on Kathrein 3GPP contributions
- Realistic in/outdoor ray tracing propagation model (including 3D building data)
- Realistic traffic intensity maps

Attribute	Value
Area size	5x7 km ² (3x5 km ²)
Nº sites / cells	63 (36) / 84 (51)
Frequency band	1800 MHz
Bandwidth	20 MHz
Cell max Tx power	40 W (46 dBm)
Antenna gain	18 dBi
Antenna mech. tilt	4 °
Session file size	16 Mb
Scheduling	Fair sharing
Link adaptation	Modified Shannon curve

Modelling & Simulation Scenarios

- Highly loaded scenario (Average cell load 42% centre of Hannover 60% 85%)
- Simulation of multiple scenarios for different VS parameters values
- Electrical tilts are on top of 4° mechanical tilt
- θe_{outer} was kept at 0° to maintain the coverage level

	Inner Sector	Outer Sector
Electrical downtilt	<i>θ↑e ↓</i> inner ∈ {6°, 8°, 10°}	<i>θ↑e ↓</i> outer = 0°
Power split	$P_{inner} \in \{0.2, 0.5, 0.8\} \times P_{total}$	$P_{outer} = P_{total} - P_{inner}$

- VS status
 - VS always ON
 - VS always OFF
 - VS controlled by SON function
- KPIs
 - Average & 10th user throughput
 - Coverage ratio

- VS level
 - Entire network
 - Single cell

- Resource utilization
- Nº users served per cell

- Introduction
- Vertical Sectorisation
- Modelling & Simulation Scenarios
- Numerical Results & Analysis
- SON Function Analytical Model
- SON Function Calibration
- Conclusions & Further Steps

Numerical Results & Analysis

- Network-wide VS
 - For a highly loaded scenario VS is always beneficial for the network
 - Almost all of the cells present gains in performance
 - Average gains of up to 33% for average user throughput and 95% for 10th percentile
 - Best performance for tilts θ8-0 and power split depends on KPI
 - P50-50 for average user throughput
 - P20-80 for 10th percentile user throughput
 - Power split matching to traffic distribution is very important
 - Where does the gain come from? Resource re-use?
 Change in interference?

Numerical Results & Analysis

Single cell VS

- When matching of power split is close to traffic distribution, the performance of the VS cell improves
- Neighbouring cells performance always improves due to decreased inter-cell interference (highly dependent of P_{outer})
- Majority of users are served by the outer sector (larger footprint)
- Different power splits have great effect on sector resource utilization
- Need for a SON function
 - Activation / de-activation of VS
 - Selection of appropriate cells for VS
 - Optimization of VS parameters

- Introduction
- Vertical Sectorisation
- Modelling & Simulation Scenarios
- Numerical Results & Analysis
- SON Function Analytical Model
- SON Function Calibration
- Conclusions & Further Steps

SON Function Analytical Model

- Design of a VS controller for VS activation / de-activation on a per cell basis
 - Decision based on load estimation of inner & outer sectors
 - Goal: Maximize Mean User Throughput (MUT) within the cell
- Two decision boundaries
 - Activate when VS is OFF (based on estimated load)
 - De-activate when VS is ON (based on actual loads)
- Assumptions
 - Tri-sector site surrounded by six interfering eNBs
 - Worst case scenario = full interference from all eNBs
- Maximize MUT

- Introduction
- Vertical Sectorisation
- Modelling & Simulation Scenarios
- Numerical Results & Analysis
- SON Function Analytical Model
- SON Function Calibration
- Conclusions & Further Steps

SON Function Calibration

- SON model adjustment using the realistic LTE system level simulator
 - Variable loading
 - Evaluate MUT in cases of VS ON & VS OFF
 - Find decision boundaries (logistic regression fitting) by choosing action for maximum MUT

SON Function Calibration

- Performance of VS SON depends on multiple factors
 - Decision timing interval / macroscopic vs microscopic application
 - Cell characteristics
 - Load & traffic distribution
 - Inter-cell interference
 - Tilt & power settings

Average User Throughput

Average User Throughput

Average User Throughput

- Introduction
- Vertical Sectorisation
- Modelling & Simulation Scenarios
- Numerical Results & Analysis
- SON Function Analytical Model
- SON Function Calibration
- Conclusions & Further Steps

Conclusions & Further Steps

- VS can offer significant gains which depend on
 - Cell load & traffic distribution
 - Interference conditions
 - VS parameters settings
- Need for a smart (de)activation rule & parameter optimization
- SON controller can offer improved performance of VS on a per cell basis
- SON controller performance is sensitive to multiple factors
- Next steps
 - Assess VS performance with respect to the cell's vertical angular spread
 - Inner & outer sector load estimation optimization
 - VS decision timing optimization
 - VS parameters optimization (tilt & power)

Thank you

Questions?

