

Performance Evaluation & SON Aspects of Vertical Sectorisation in a Realistic LTE Network Environment

IWSON 2014 - Barcelona

26 August 2014

Konstantinos Trichias, Remco Litjens, Zwi Altman, Abdoulaye Tall, Pradeepa Ramachandra

- Introduction
- Vertical Sectorisation
- Modelling & Simulation Scenarios
- Numerical Results & Analysis
- SON Function Analytical Model
- SON Function Calibration
- Conclusions & Further Steps

Introduction

- Motivation
 - Increasing traffic demand in mobile networks
 - New systems & features for higher network capacity & improved performance

How to combine VS with SON to maximize gains and optimize performance?

- Introduction
- Vertical Sectorisation
- Modelling & Simulation Scenarios
- Numerical Results & Analysis
- SON Function Analytical Model
- SON Function Calibration
- Conclusions & Further Steps

Vertical Sectorisation

• VS is performed by splitting the antenna beam serving one cell, into two beams with different electrical tilts – θ_e (split in the vertical plane)

Telefinica

- The mechanical tilt of the antenna remains the same
- The former cell is split into two new cells / sectors serving different areas
- The two sectors have their own physical cell IDs
- Full reuse of the available spectral resources

iMinds **NOKI**

5

 Sharing of the total transmit power available for the cell (P_{total} = P_{inner} + P_{outer})

Vertical Sectorisation

Pros

- Spatial reuse of resources
- Reduced inter-cell interference (reduced Tx power)
- Focused beam on high traffic demand area (increased SINR)

Cons

- Reduced Tx power per sector
- Increased inter-cell interference (additional cell)

- Introduction
- Vertical Sectorisation
- Modelling & Simulation Scenarios
- Numerical Results & Analysis
- SON Function Analytical Model
- SON Function Calibration
- Conclusions & Further Steps

Modelling & Simulation Scenarios

- Realistic LTE network (Hannover, Germany)
- Advanced AAS model based on Kathrein 3GPP contributions
- Realistic in/outdoor ray tracing propagation model (including 3D building data)

Telefonica

Realistic traffic intensity maps

Attribute	Value
Area size	5x7 km ² (3x5 km ²)
Nº sites / cells	63 (36) / 84 (51)
Frequency band	1800 MHz
Bandwidth	20 MHz
Cell max Tx power	40 W (46 dBm)
Antenna gain	18 dBi
Antenna mech. tilt	4°
Session file size	16 Mb
Scheduling	Fair sharing
Link adaptation	Modified Shannon curve

🕷 iMinds NOKIA

atesio

Modelling & Simulation Scenarios

- Highly loaded scenario (Average cell load 42% centre of Hannover 60% 85%)
- Simulation of multiple scenarios for different VS parameters values
- Electrical tilts are on top of 4° mechanical tilt
- θ^{e}_{outer} was kept at 0° to maintain the coverage level

	Inner Sector	Outer Sector
Electrical downtilt	$\theta \uparrow e \downarrow \text{inner} \in \{6^\circ, 8^\circ, 10^\circ\}$	$\theta \uparrow e \downarrow \text{outer} = 0^{\circ}$
Power split	$P_{inner} \in \{0.2, 0.5, 0.8\} \times P_{total}$	P _{outer} = P _{total} - P _{inner}

- VS status
 - VS always ON
 - VS always OFF
 - VS controlled by SON function
- KPIs
 - Average & 10th user throughput
 - Coverage ratio

- VS level
 - Entire network
 - Single cell

- Resource utilization
- Nº users served per cell

- Introduction
- Vertical Sectorisation
- Modelling & Simulation Scenarios
- Numerical Results & Analysis
- SON Function Analytical Model
- SON Function Calibration
- Conclusions & Further Steps

Numerical Results & Analysis

iMinds NOK

Network-wide VS

11

- For a highly loaded scenario VS is always beneficial for the network
- Almost all of the cells present gains in performance
- Average gains of up to 33% for average user throughput and 95% for 10th percentile
- Best performance for tilts θ 8-0 and power split depends on KPI
 - P50-50 for average user throughput
 - P20-80 for 10th percentile user throughput

Telefinica

Numerical Results & Analysis

- Single cell VS
 - When matching of power split is close to traffic distribution, the performance of the VS cell improves
 - Neighbouring cells performance always improves due to decreased inter-cell interference (highly dependent of P_{outer})
 - Majority of users are served by the outer sector (larger footprint)
 - Different power splits have great effect on sector resource utilization
- Need for a SON function

12

- Activation / de-activation of VS
- Selection of appropriate cells for VS
- Optimization of VS parameters

iMinds **NOKI**

Telefonica

- Introduction
- Vertical Sectorisation
- Modelling & Simulation Scenarios
- Numerical Results & Analysis
- SON Function Analytical Model
- SON Function Calibration
- Conclusions & Further Steps

SON Function Analytical Model

- Design of a VS controller for VS activation / de-activation on a per cell basis
 - Decision based on load estimation of inner & outer sectors
 - Goal: Maximize Mean User Throughput (MUT) within the cell
- Two decision boundaries
 - Activate when VS is OFF (based on estimated load)
 - De-activate when VS is ON (based on actual loads)
- Assumptions
 - Tri-sector site surrounded by six interfering eNBs
 - Worst case scenario = full interference from all eNBs
- Maximize MUT

- Introduction
- Vertical Sectorisation
- Modelling & Simulation Scenarios
- Numerical Results & Analysis
- SON Function Analytical Model
- SON Function Calibration
- Conclusions & Further Steps

SON Function Calibration

SON model adjustment using the realistic LTE system level simulator

- Variable loading

16

ERICSSON

- Evaluate MUT in cases of VS ON & VS OFF

iMinds **NOK**

- Find decision boundaries (logistic regression fitting) by choosing action for maximum MUT

Telefonica

SON Function Calibration

Performance of VS SON depends on multiple factors

- Decision timing interval / macroscopic vs microscopic application
- Cell characteristics
- Load & traffic distribution
- Inter-cell interference
- Tilt & power settings

Average User Throughput

Average User Throughput

Average User Throughput

10 ERICSSON MINDS NOKIA Orange Telefonica

- Introduction
- Vertical Sectorisation
- Modelling & Simulation Scenarios
- Numerical Results & Analysis
- SON Function Analytical Model
- SON Function Calibration
- Conclusions & Further Steps

Conclusions & Further Steps

- VS can offer significant gains which depend on
 - Cell load & traffic distribution
 - Interference conditions
 - VS parameters settings
- Need for a smart (de)activation rule & parameter optimization
- SON controller can offer improved performance of VS on a per cell basis
- SON controller performance is sensitive to multiple factors
- Next steps

19

- Assess VS performance with respect to the cell's vertical angular spread

Telefonica

- Inner & outer sector load estimation optimization
- VS decision timing optimization
- VS parameters optimization (tilt & power)

Questions ?

