Coordinating SON Instances: Reinforcement Learning with Distributed Value Function

Ovidiu Iacoboaiea†‡, Berna Sayrac†, Sana Ben Jemaa†, Pascal Bianchi‡

(†) Orange Labs, 38-40 rue du General Leclerc 92130, Issy les Moulineaux, France
(‡) Telecom ParisTech, 37 rue Dareau 75014, Paris, France
Presentation agenda:

- Introduction
- System Description: SONCO, network stability
- Reinforcement Learning
- State Aggregation
- Simulation Results
- Conclusions and Future Work
SON functions are meant to automate network tuning (e.g. Mobility Load Balancing, (MLB), etc.) in order to reduce CAPEX and OPEX.

A SON instance is a realization/instantiation of a SON function running on one (or several) cells.

In a real network we may have several SON instances of the same or different SON functions, this can generate conflicts and instability.

Therefore we need a SON COordinator (SONCO)
System description

We consider:

- N cells. (each sector constitutes a cell)
- 1 SON function (e.g. MLB*), black boxes
 - instantiated on every cell, i.e. N SON instances
- K parameters on each cell tuned by the SON functions (e.g. CIO*, HandOver Hysteresis)

- The network at time t: $P_{t,n,k}$ - the parameter k on cell n

- The SON at time t: $U_{t,n,k} \in [\pm 1; 0]$ - the request of the SO instance n targeting $P_{t,n,k}$
 - $U_{t,n,k} = -1$, $U_{t,n,k} = 1$ and $U_{t,n,k} = 0$ is a request to decrease, increase and maintain the value of the target parameter, respectively

- The SONCO at time t: $A_{t,n,k} \in \{1,0\}$ - the action of the SONCO
 - if $A_{t,n,k} = 1$ / $A_{t,n,k} = 0$ means that we accept/deny the request $U_{t,n,k}$, i.e. $P_{t+1,n,k} = P_{t,n,k} + U_{t,n,k} A_{t,n,k}$
- targets to eliminate unnecessary parameter fluctuations

(*) MLB = Mobility Load Balancing; (*)
MDP formulation

- **State:** $S_t = (P_t, U_t)$

- **Action:** $A_t \in \{0,1\}^{NK}$

- **Transition kernel:**
 - $P_{t+1} = g(P_t, U_t, A_t)$ (where g is a deterministic function)
 - $U_{t+1} = h(P_{t+1}, \xi_{t+1})$, i.e. is a “random” function of P_{t+1}, and some noise ξ_{t+1}

$$R_{t+1} = \sum_n R_{t+1,n}$$
Target: optimal policy, i.e. best A_t

- we define discounted sum reward (value function):
 \[V^{\pi}(s) = \mathbb{E}_\pi \left[\sum_{t=0}^{\infty} \gamma^t R_t \mid S_0 = s \right] \]

- the optimal policy π^* is the policy which is better or equal to all other policies:
 \[V^{\pi^*}(s) \geq V^{\pi}(s), \quad \forall s \]

- the optimal policy can be expressed as
 \[\pi^*(s) = \arg\max_a Q^*(s, a) \]

where $Q^*(s, a)$ is the optimal action-value function:

\[Q^*(s, a) = \mathbb{E}_{\pi^*} \left[\sum_{t=0}^{\infty} \gamma^t R_t \mid S_0 = s, A_0 = a \right] \]

As we only have partial knowledge of the transition kernel, we resort to Reinforcement Learning (RL) to estimate “on line” the Q^* function. For example we could use Q-learning.

BUT: we have deal with the complexity issue
Towards a reduced complexity RL algorithm

Main idea: exploit the particular structure/features of the problem/model:

- Special structure of the transition kernel:

 \[
 P_{t+1} = g(S_t, A_t) \\
 U_{t+1} = h(P_{t+1}, \xi_{t+1})
 \]

- the reward:

 \[
 R_{t+1} = \sum_{n \in \mathcal{N}} R_{t+1,n}
 \]

The consequence is:

\[
Q(s, a) = \sum_{n \in \mathcal{N}} W_n(p'), p' = g(s, a)
\]

The complexity is reduced as now we can learn the \(W\)-function instead of the \(Q\)-function, (the domain of \((s, a) = ((p, u), a)\) is smaller than the domain of \(g(s, a) = p\)
Still not enough, but…

- The complexity is still too large as the domain of $p' = g(s, a)$ scales exponentially with the number of cells.

- Use state aggregation to reduce complexity.

$$W_n(p) \approx \bar{W}_n(\bar{p}_n)$$

\bar{p}_n contains the parameters of cell n and its neighbors.
Application example

Some scenario details:

- 1 MLB instance on each and every cell tuning the CIO,
- we have an instability problem on the CIO,
- the reward is a sum of sub-rewards calculated per cell \(W_n \ (n \in \mathcal{N}) \),
- from \(W_n(p) \) to \(\bar{W}_n(\bar{p}_n) \) : \(\bar{p}_n \) contains the parameters of cell \(n \) and its neighbors,
- state space scales linearly with the no. of cells,
- reward: \(R_{t,n} = 1,0 \cdot \mathbb{I}_{\{u_{t,n,CIO}=0\}} + 0,9 \cdot \mathbb{I}_{\{u_{t,n,CIO}=1\}} \),
 i.e. no reward when the request is “off-load”,
 to say that we are unhappy when the cell is overloaded.
Simulation Results

4 scenarios:

1. **SonCo Optimal Policy**: uses and estimates W_n,

2. **SonCo Sub-optimal Policy**: uses and estimates \overline{W}_n,

3. **SonCo off**

4. **Son Functions off**

- stationary traffic
Conclusion and future work

- with RL we can improve the network stability, i.e. reduce the unnecessary parameter changes, without affecting the target of the SON (the load balancing)
- the solutions state space scales linearly with the number of cells

Future work:
- analyzing tracking capability of the algorithm,
- HetNet scenarios,
Questions ?

ovidiu.iacoboaiea@orange.com
SONCO: Algorithm

So this is what has to be implemented:

\[
\text{Algorithm 1 SONCO}
\]

\[\text{Function Init :}
\]
\[\forall i \in \mathcal{I}_m, \forall j \in \mathcal{J}_i \text{ initialize } \theta_{i,j} = 0\]

\[\text{Function SONCO :}
\]

Observe current parameter configurations \(p_{\mathcal{O}_m}\) and update requests \(u_{\mathcal{O}_m, z}\), calculate regret \(r_{\mathcal{I}_m}\),

\[
\text{Compute } a_{\mathcal{O}_m}^* = \arg \min_{a_{\mathcal{O}_m} \in A_{\mathcal{O}_m}} \sum_{i \in \mathcal{I}_m} \bar{W}_i^* (\bar{y}_i ((\bar{p}_i, \bar{u}_i), \bar{a}_i))
\]

\[
\text{Compute (and overwrite) } a_{\mathcal{O}_m}^* = \left(\mathbb{I}\{\exists z \in \mathcal{Z} \text{ s.t. } u_{n,k,z} > 0\} - \mathbb{I}\{\exists z \in \mathcal{Z} \text{ s.t. } u_{n,k,z} < 0\} \right)_{(n,k)} \in \bar{\mathcal{O}}_m
\]

\[
\text{Compute } p_{\mathcal{O}_m}^* = g_m \left((p_{\mathcal{O}_m}, u_{\mathcal{O}_m, z}), a_{\mathcal{O}_m}^* \right)
\]

For all \(i \in \mathcal{I}_m,\)

\[
\theta_{t+1,i,j} = \theta_{t,i,j} + \alpha \left[r_i + \gamma \sum_{i \in \mathcal{I}_m} \bar{W}_i^* (\bar{p}_i) - \sum_{i \in \mathcal{I}_m} \bar{W}_i^* (\bar{p}_i) \right] F_{i,j} (\bar{p}_i)
\]

Choose action \(a_{\mathcal{O}_m}\) using the \(\epsilon\)-greedy policy \(\pi_m ((p_{\mathcal{O}_m}, u_{\mathcal{O}_m, z}), \{a_{\mathcal{O}_m}\})) = \left((1 - \epsilon) \mathbb{I}\{a_{\mathcal{O}_m} = a_{\mathcal{O}_m}^*\} + \frac{\epsilon}{3K} \right) \mathbb{I}\{a_{\mathcal{O}_m} = a_{\mathcal{O}_m}^*\},\)

Take action \(a_{\mathcal{O}_m}\).
Looking at base station B:
- if($\text{utilization} > T_{\text{CIO}--}$) \Rightarrow CIO$_B$--
- if($\text{utilization} < T_{\text{CIO}++}$) \Rightarrow CIO$_B$++ (for going back to the default configuration)
- else \Rightarrow Relax (void)

CIO range (-12dB:0dB/ step-size 3dB)