
Remco Litjens
TNO
The Netherlands
Credits

- Coauthors / project partners
 - Andreas Eisenblätter
 - Beatriz González Rodríguez
 - Fredrik Gunnarsson
 - Thomas Kürner
 - Remco Litjens
 - Bart Sas
 - Berna Sayrac
 - Lars Christoph Schmelz
 - Colin Willcock

‘Designing a unified self-management system for the efficient and holistic operations of a heterogeneous mobile network’
Challenge: managing future network complexity

- **Heterogeneous access networks** to be cooperatively managed: multi-RAT, multi-layer, multi-vendor
- **Network ‘dynamicity’** ~ energy savings, femtocells
- **Operational complexity:** multitude of tunable radio parameters with intricate dependencies, effective on different time scales
Challenge: *market pressure*

- Increasing demand for ubiquitous mobile broadband access
 - Growing suite of services with distinct characteristics & requirements

- Pressure to remain competitive
 - Decreasing revenues
 - Reduce time to market of innovative services
 - Reduce costs (OPEX/CAPEX)
 - Enhance QoE

- Mobile communications becomes more and more a critical infrastructure
 - Need for network robustness/resilience
Solution

- Self-management for unified heterogeneous radio access networks

- Key benefits: enhanced ...
 - Operability (OPEX ↓)
 - Less human involvement in network planning, optimisation, monitoring, drive testing, troubleshooting, ...
 - Operational efficiency (CAPEX ↓)
 - Via ‘fine-grained’ tuning
 - Delayed capacity expansions
 - Customer satisfaction ↑
 - Service availability
 - Quality of Experience

![Impact of ‘Self-Optimisation’](image1.png)

![Impact of ‘Self-Healing’](image2.png)
Solution

• NGMN/3GPP have kicked off the development of initial SON solutions
 – Mobility robustness optimization, coverage/capacity optimization, interference management, energy savings, …
 – *Typically target single-RAT/layer solutions*

• Open issues
 – Integrated SON management to ensure conflict-free coordination of SON functions towards a set of common high-level objectives
 • Likelihood of (performance or parameter) conflicts increases in the number of operational SON functions concurrently active in overlapping areas, at different layers/RATs, considering HW from different vendors
 – Development of multi-layer/RAT SON functions
 – Automated support of residual operational tasks
Vision

- Self-Management for Unified Heterogeneous Radio Access Networks
 - Service provider
 - Network operator
 - Self-management system
 - Network resources
Vision

• Self-Management for Unified Heterogeneous Radio Access Networks
 – Integrated SON Management
 • Policy transformation
 • SON coordination
 • Monitoring
 – SON functions
 • Single/multi-RAT/layer
 • Self-configuration, -optimization, -healing
 – Decision support system
 • Spectrum refarming
 • Technology upgrades
 • Site deployment
 • SLA management
Vision: *Integrated SON Management*

- Management interface between the network operator and the SON functions
 - Policy transformation and supervision
 - *Heading harmonization*
 - Transform operator’s general network-oriented objectives to specific policies/execution rules for individual SON functions
 - Business-/strategic level, e.g. capacity targets
 - System objectives, e.g. max 10% LTE throughput
 - SON policies, if condition A then choose SON function configuration B
 - Automates operator’s expert knowledge

OBJECTIVES
- Coverage
- Resource/energy efficiency
- QoE
- Service continuity

MLB
- SETTINGS, e.g. load thresholds, step sizes
- ALGORITHM

MRO
- SETTINGS, e.g. w_{DROPPING}, w_{RLF}, $w_{\text{PING PONG}}$
- ALGORITHM

SON COORDINATOR
- SETTINGS
- ALGORITHM

2 x POLICY TRANSFORMATION & ENFORCEMENT
Vision: *Integrated SON Management*

- Management interface between the network operator and the SON functions
 - Policy transformation and supervision
 - *Heading harmonization*
 - Operational SON coordination
 - *Tailing harmonization*
 - Detect/resolve conflicts between SON functions, instabilities, …
 - Conflicting actions, conflicting performance effects, …
 - Temporary SON function locks, effectuation of priorities
 - Monitoring
 - Collection/processing of performance data for SON functions, SON coordination and for reporting purposes to the operator comparing realizations with objectives
 - *Work in progress: SON management for MLB, MRO, CovOpt*
Vision: Multi-layer/RAT Functions

- Dynamic Spectrum Allocation & Interference Mgmt
 - Automated assignment of spectrum to cells based on spatio-temporal traffic load fluctuations
 - Shift of resources to traffic demand
 - Across RATs (2G/3G/LTE)
 - Across layers (macro/micro/pico/femto)
 - Adjustment of carrier frequency, bandwidth, tx power
Vision: *Multi-layer/RAT Functions*

- **Active Antenna Systems**
 - Dynamic vertical sectorization
 - Automated on/off switching (splitting vs merging)
 - Automated optimisation of inner/outer cell-specific downtilts
 - Consideration of spatio-temporal traffic load fluctuations
 - Adaptation of resources to traffic demand
 - Tradeoff of increased capacity vs interference vs handovers
Vision: **Multi-layer/RAT Functions**

- Multi-layer LTE/Wi-Fi Traffic Steering
 - ‘Choose WiFi when available’ may offload cellular network but degrade effectiveness of WiFi and provide worse QoE
 - Poor WiFi coverage
 - WiFi overload
 - High mobility scenarios
 - Shift of traffic demand to resources
 - Development of adaptive traffic steering solutions to optimize resource efficiency and user experience
 - Consideration of spatio-temporal traffic load fluctuations and user mobility
Vision: *Multi-layer/RAT Functions*

- Work in progress
 - Definition of realistic scenarios
 - Development of simulators
 - Calibration of simulators
 - Controllability study
 - Observability study
 - Algorithm development
 - Assessment of SON functions
 - From single- to multi-RAT/layer
 - From stand-alone to integrated
 - Demonstration
Vision: Decision Support System

• Aiding operators with residual tasks fed by advanced network intelligence
 – Recommendations to swap base stations to other RATs
 • Once capacity increase is worth the investment & terminals are supportive
 – Recommendations to swap base station to other frequency bands
 – Recommendations to deploy new sites (macro, micro, pico, femto)
 • If the traffic growth can no longer be supported by the self-optimized network
 – Insight in the ‘resource cost of performance’
 • For SLA (re)negotiations
 • Promises to service providers vs network cost to deliver
 • Relation between performance targets, e.g. 10th percentile vs average
Concluding remarks

- **Key drivers for self-management**
 - Complexity of future multi-layer/RAT technologies and pressure to be competitive are key drivers for self-management

- **SEMAFOUR develops solutions for ‘Self-Management for Unified Heterogeneous Radio Access Networks’**
 - Integrated SON management
 - Multi-layer/RAT SON functions
 - Decision Support Systems

- **Project focus**
 - Development, assessment and demonstration of concepts and algorithms
 - Embedding in standardisation: architectures, protocols, measurements
More information

- www.fp7-semafour.eu
- SEMAFOUR demonstration
 - General project information
 - SON MGMT based on operator objectives
- I hope you attended Workshop 10c
 - Management Frameworks for Future Mobile Communication Networks
 - C. Willcock, ‘Challenges for SON Functions and SON Management’
 - N. Scully, ‘The Development of SON for Future Mobile Networks’
 - Discussion panel on next steps
Questions?

It is a bit freaky with this wireless technology.