Dynamic, Context-Specific SON Management Driven by Operator Objectives

Christoph Frenzel, Simon Lohmüller, Lars Christoph Schmelz

University of Augsburg , Germany Nokia, Munich, Germany

NOMS 2014, Krakow, Poland

© Nokia 2014

The Goal (from 30.000 ft) ...

... Managing a Mobile Network through Objectives instead of Network Parameters

Problem Manual Gap between Operator Objectives and SON Configuration

Manual Gap between Operator Objectives and SON Configuration

SON Function Configuration

- SON Functions are black boxes that adapt *Network Configuration Parameters (NCPs)* in order to optimize dedicated *Key Performance Indicators (KPIs)*
- SON Function Configuration Parameter Value (SCV) Sets configure the SON function behavior
- Depending on the SCV Set, the SON function adapts the network to optimize specific KPIs, e.g., MLB can be configured to optimize cell load or handover settings

+6dB

Manual Gap between Operator Objectives and SON Configuration

Example SCV Set for MLB Upper Cell Individual Offset (CIO) limit = Lower CIO limit = -6dB SCV Set A • Step size: 1dB SCV SCV SCV Network • Upper cell load threshold = 50% Statu (KPI SCP SCP SCP • Lower cell load threshold = 30% Load averaging time: 60 seconds SON Function A KPls

Manual Gap between Operator Objectives and SON Configuration

Technical Objectives

- Context-dependent, prioritized targets for KPIs
 - Context like time, cell location, and cell type
 - Priorities allow to make a decision between competing KPI targets
 - KPI targets are minimization or maximization of KPI values
- Defined by operator

Universitä Augsburg ΝΟΚΙΔ

Manual Gap between Operator Objectives and SON Configuration

Technical Objective Examples

- With a very high priority, the cell load in an urban location during peak hours should be minimized.
- With a high priority, the dropped call rate in an urban location should be minimized.
- With a very low priority, energy consumption during periods with low traffic should be maximized.

Universitä Augsburg

ΝΟΚΙΔ

INN

Manual Gap between Operator Objectives and SON Configuration

Manual Gap

- Automation gap
 - Technical objectives need to be manually transformed to SCV Sets
 - Mapping requires technical knowledge usually only available at the manufacturer
- Dynamics gap
 - SCV Sets for SON functions need to be set depending on the operational context

Universitä Augsburg ΝΟΚΙΔ

Manual Gap between Operator Objectives and SON Configuration

Universitä Augsburg

NOKIA

Solution Concept Automatic Transformation & Dynamic, Policy-based Selection

Solution Concept Automatic Transformation & Dynamic, Policy-based Selection

SON Objective Manager

- Overcomes automation gap
- Transforms technical objectives into SCV Policy

Policy

• Executes at design time

Policy System

- Overcomes dynamics gap
- Evaluates the SCV Policy in concrete context and applies SCV Sets
- Executes at run time

Objective Model

- Machine readable model of objectives, e.g., rules
- Provided by operator

Examples

- IF time in [08:00, 17:59] AND location = urban THEN min cell load WITH priority = 1
- IF location=rural

THEN min energy consumption WITH priority = 4

Context Model

- Domains of context variables
- Necessary for computation
- Provided by operator

Examples

- location : {rural, urban}
- time : [00:00, 23:59]

SON function Model

- Machine readable model how SCV Sets satisfy technical objectives, e.g., mapping between technical objective and SCV Set
- Provided by manufacturer

Example for MLB Model

- Minimize cell load → (4, -2, 1, 0.8, 0.5, 30)
- Maximize HOSR → (6, -6, 1, 0.5, 0.3, 60)
- Default → (6, -6, 1, 0.5, 0.3, 60)

SON Objective Manager

- 3-step transformation process
 - 1. Build up state space of all possible system contexts
 - 2. Assign objectives to system states
 - 3. Determine SCV Sets which satisfy highest priority

NOKIA

SCV Policy

• Conflict-free and complete rules defining SCV Sets for all defined context

Example

 IF ((time in [00:00, 07:59]OR time in [18:00, 23:59]) AND location = urban) OR (time in [08:00, 17:59] AND location = rural) THEN MLB = (6, -6, 1, 0.5, 0.3, 60)

Conclusion Achievements

Approach for Overcoming the Manual Gap

- Automation gap \rightarrow transformation of technical objectives into SCV Sets
- Dynamics gap \rightarrow configuration of SON functions according to context

Structured Description of Knowledge in Models

- Description of prioritized, context-specific KPI targets in objective model
- Mapping between KPI targets and SON function configuration in SON function model
- Clear separation between operator and manufacturer knowledge

Impact: Objective-driven network operation

- Relieves operator from repetitive, low-level configuration tasks
- Allows optimized operation of the SON system

Next Steps:

- Making the SON function model context-specific
- Learning of SON function model
- More expressive objective model
- Derivation of technical objectives from high-level business goals

Universität Augsburg University

© Nokia 2014