Self-Management in Cellular Networks
Drivers, Vision, Gains, Achievements & Challenges

Remco Litjens
Performance of Networks & Systems
Expertise Centre Technical Sciences
TNO

SCVT ‘12
November 16, 2012
Eindhoven, The Netherlands
OUTLINE

› INTRODUCTION
› TRENDS & DRIVERS
› VISION
› EXPECTED GAINS
› ACHIEVEMENTS
› CHALLENGES
› CONCLUDING REMARKS
OUTLINE

› INTRODUCTION
› TRENDS & DRIVERS
› VISION
› EXPECTED GAINS
› ACHIEVEMENTS
› CHALLENGES
› CONCLUDING REMARKS
INTRODUCTION

- Cellular networks are traditionally largely manually operated
 - Separation of network planning and optimization
 - (Non-)automated planning/simulation tools used to select sites, determine antenna tilt and optimise radio parameters
 - ‘Over-abstraction’ of applied technology models
 - Manual configuration of sites
 - Radio (resource management) parameters updated weekly/monthly
 - Delayed, manual and poor handling of cell/site failures
 - Future networks will exhibit a significant degree of self-management

- Broad attention
 - 3GPP, NGMN, FP7, CELTIC, …
 - Operators, equipment/tool vendors, academia/research institutes
OUTLINE

› INTRODUCTION
› TRENDS & DRIVERS
› VISION
› EXPECTED GAINS
› ACHIEVEMENTS
› CHALLENGES
› CONCLUDING REMARKS
TRENDS & DRIVERS

- Complexity of future/contemporary wireless access networks
 - Multitude of tunable parameters with intricate dependencies
 - Multitude of radio resource management mechanisms on different time scales
 - Complexity is needed to maximize potential of wireless access networks
TRENDS & DRIVERS

› Heterogeneous access networks to be cooperatively managed
 › Multi-RAT: 2G/3G/LTE/LTE-A/WiFi
 › Multi-layer: Macro/micro/pico/femto
 › Multi-vendor

› Mode of operation
 › Network sharing, e.g. national roaming, hardware/spectrum sharing
 › Network ‘dynamicity’, incl. uncoordinated femtocell deployment
 › QoE/service-centric traffic management
TRENDS & DRIVERS

- Higher operational frequencies
 - Multitude of cells to be managed
- Service/traffic
 - Increasing demand for ubiquitous mobile broadband access
 - Growing suite of services with distinct characteristics & requirements
TRENDS & DRIVERS

› Market perspective
 › Need to reduce time-to-market of innovative services
 › Reduce operational hurdles of service introduction
 › Pressure to remain competitive
 › Reduce costs (OPEX/CAPEX)
 › Enhance resource efficiency

› ‘Society’
 › Mobile communications becomes more and more a critical infrastructure for economy and society as a whole: need for network robustness/resilience
OUTLINE

› INTRODUCTION
› TRENDS & DRIVERS
› VISION
› EXPECTED GAINS
› ACHIEVEMENTS
› CHALLENGES
› CONCLUDING REMARKS
VISION

› Self-Management for Unified Heterogeneous Radio Access Networks
 › Service provider
 › Network operator
 ◀ Self-management system
 › Network resources
VISION

- Self-Management for Unified Heterogeneous Radio Access Networks
 - Policy transformation
 - SON coordination
 - SON functions
 - Multi-RAT/layer
 - Single-RAT/layer
 - Decision support system
VISION

› Self-Management for Unified Heterogeneous Radio Access Networks
› SON functions
 › Self-configuration
 › Incidental, intentional events
 › ‘Plug and play’ installation of new base stations and features
 › Self-healing
 › Incidental, non-intentional events
 › Cell outage detection
 › Cell outage compensation
VISION

› Self-Management for Unified Heterogeneous Radio Access Networks

› SON functions
 › Self-optimization
 › Measurements
 › Performance indicators
 › Network, traffic, mobility, propagation conditions
 › Optimize periodicity, accuracy
 › Automatic tuning
 › Smart algorithms process measurements into parameter adjustments, e.g. tilt, power, handover/scheduling parameters, …
VISION

› Self-Management for Unified Heterogeneous Radio Access Networks

› Policy transformation
 › Heading harmonization
 › Transform high-level operator objective to SON function specific objectives
 › Example - Optimization weights between call dropping, ping-pong handovers and radio link failure in handover optimization

› SON coordination
 › Tailing harmonization
 › Detect/resolve conflicts between SON functions
 › Conflicting actions, conflicting performance effects, …
VISION

- Self-Management for Unified Heterogeneous Radio Access Networks
 - Decision support system
 - Intelligent selection of required hardware upgrades
 - Advice on migration of sites to other technologies or frequency bands
 - Estimation of the resource cost of performance to assist the (re)negotiation of SLAs
OUTLINE

› INTRODUCTION
› TRENDS & DRIVERS
› VISION
› EXPECTED GAINS
› ACHIEVEMENTS
› CHALLENGES
› CONCLUDING REMARKS
EXPECTED GAINS

› OPEX reductions …
 › Primary objective!
 › Less human involvement in
 › Network planning/optimization
 › Performance monitoring, drive testing
 › Troubleshooting
 › About 25% of OPEX is related to network operations
 › x00 million € savings potential per network
EXPECTED GAINS

- ... and/or CAPEX reductions ...
 - Via delayed capacity expansions
 - Smart eNodeBs may however be more expensive
- ... and/or performance enhancements
 - Enhanced service availability (robustness/resilience), service quality
OUTLINE

› INTRODUCTION
› TRENDS & DRIVERS
› VISION
› EXPECTED GAINS
› ACHIEVEMENTS
› CHALLENGES
› CONCLUDING REMARKS
ACHIEVEMENTS

Existing solutions primarily target:
- Self-configuration
- Stand-alone self-optimization functions
 - Single-RAT, single-layer scenarios

Examples:
- Smooth automated integration of new sites
- Neighbor cell list optimization
- Handover parameter optimization
- Cell outage compensation
- Self-optimization of admission control thresholds
- Load balancing
- Interference coordination
- Automatic on/off-switching of sites
ACHIEVEMENTS

› Smooth automated integration of new sites
 › Minimize disruptive effects
 › Observation phase
 › Data collection
 › Off-line tilt/power optimization
 › Pre-computed trajectory
 › Integration phase
 › Gradual activation
 › Power 0 → P*
 › Tilt 90° → T*
 › Adoption in regular optimization cycles
ACHIEVEMENTS

Handover parameter optimization
ACHIEVEMENTS

› Cell outage compensation

Operator policy: Coverage, QoS

Coverage/QoS estimation

Measurements

Control parameters

Detection

Compensation
ACHIEVEMENTS

› Cell outage compensation
 › Mitigate local degradation of coverage; keep QoS at acceptable level
 › Determine set of compensating sites
 › Adjust control parameters
 › Antenna downtilt
 › UL/DL powers
 › …
ACHIEVEMENTS

- Cell outage compensation
ACHIEVEMENTS

› Cell outage compensation

Figure: (a) Outage situation with no compensation, and (b) snapshot of situation with largely converged compensation.
ACHIEVEMENTS

› Load balancing
 › Detect load asymmetry between neighboring cells
 › Adjust handover control parameters to balance loads
 › Example scenario: *moving hot spot*

non-regular network; hotspot is moving from cell 27 to 13

scenario 3

reference

with load balancing
CHALLENGES

› Development of SON functions

› Use cases
 › Self-optimisation of ‘multiflow’, CoMP and ICIC features
 › Automatic traffic steering in a multi-layer/RAT network
 › Dynamic spectrum management in a multi-layer/RAT network
 › Automated tuning of Active Antenna Systems

› Intrinsic challenges
 › Algorithm development
 › Multi-objective optimization
 › Data gathering: performance vs signalling cost
 › Timely detection for timely response
 › Dealing with delayed feedback
 › Effect of control actions vs natural variations
CHALLENGES

- Development of unified self-management system
- Policy transformation
- Dependencies
- SON coordination
- Guard function
- Autognostics
- Conflict handling
- Intricate parameter dependencies
- Prevent oscillations
CHALLENGES

- Development of unified self-management system
- Decision support systems
- Gradual introduction
 - Build confidence
 - On/off functions
 - Degree of freedom
 - Manual approvals
- Architectural embedding
 - Measurements
 - Protocols
 - Interfaces
OUTLINE

› INTRODUCTION
› TRENDS & DRIVERS
› VISION
› EXPECTED GAINS
› ACHIEVEMENTS
› CHALLENGES
› CONCLUDING REMARKS
CONCLUDING REMARKS

- Self-management is the key approach to
 - ... reduce O/CAPEX
 - ... cost-effective provisioning of high-quality services
 - ... reduce time-to-market of new features, services

- Key aspects
 - Policy transformation
 - SON coordination
 - SON functions
 - Decision support system

- Key challenges
 - Effectiveness, reliability, stability
 - Measurements, interfaces, protocols, architectures
QUESTIONS?