SON Coordination for parameter conflict resolution:
A reinforcement learning framework

Ovidiu Iacoboiaea†‡, Berna Sayrac†, Sana Ben Jemaa†, Pascal Bianchi‡

(†) Orange Labs, 38-40 rue du General Leclerc 92130, Issy les Moulineaux, France
(‡) Telecom ParisTech, 37 rue Dareau 75014, Paris, France
Presentation agenda:

- Introduction
- System Description
- SON Coordination
- Simulation Results
- Conclusions and Future Work
Introduction to SON & SON Coordination

- SON functions are meant to automate network tuning (e.g. MLB, MRO, etc.) in order to reduce CAPEX and OPEX.
- A SON instance is a realization/instantiation of a SON function running on one or several cells.
- In a real network we may have several SON instances of different SON functions, this can generate conflicts.
We consider:
• 2 SON functions: MLB and MRO
• a network segment of N=7 cells
• on every cell we have a MLB instance and a MRO instance
• one HotSpot (HS)
• FTP like traffic
• all SON instances are synchronized (time window 5 min)
System Description: MLB

Looking at base station B:
- if(utilization > T_{CIO-}) \Rightarrow CIO$_B$--
- if(utilization < T_{CIO+}) \Rightarrow CIO$_B$++ (for going back to the default configuration)
- else \Rightarrow Relax (void)

CIO range (-12dB:0dB/ step-size 3dB)
System Description: MRO

MRO target: reduce the number of Too Late HOs, Too Early HOs, Wrong Cell HOs, Ping-Pongs

Example: Consider Cell A. as source for all the following events.
- to reduce the No. of Ping-Pongs we increase $Hyst_A$
- to reduce the No. of Too Late HOs we decrease $Hyst_A$
- to do both the above one solution is to first decrease the CIO of the neighbor towards which cell A has the biggest No. of Too Late HOs (assume it is cell B \rightarrow CIO$_B^{'}$--). Afterwards we will most-likely increase $Hyst_A$.

For Cell A:

- Ping-Pongs ($A \rightarrow B \rightarrow ^*$)
- Too Early HOs ($A \rightarrow B^{(RLF)} \rightarrow A$)
- Wrong Cell HOs ($A \rightarrow B^{(RLF)} \rightarrow ^*$)
SON Coordination

update requests

conflict

CIO

HYS

SON Coordination

SONCO

update requests

intra-SON messages

intra-SON messages
SON Coordination

- An update request contains
 - the parameter request: increase/decrease/maintain
 - an information on the criticalness of the request

Reinforcement Learning helps us learn from past decisions:
- create a state space that includes the CIOs of the cells(c)
- target: find the state that maximizes a “reward”
- the “reward” is a function of
 - the happiness indication contained in the update requests from the SON instances
 - weights associated to the SON functions by the operator
Simulation Results

average load

- **MLB weight**
 - w=(8,1)
 - w=(4,1)
 - w=(1,1)
 - w=(1,4)
 - w=(1,8)

- **MRO weight**
 - w=(8,1)
 - w=(4,1)
 - w=(1,1)
 - w=(1,4)
 - w=(1,8)

High priority to MLB

High priority to MRO

No. Too Late HOs [#/5min]

No. Ping-Pongs [#/5min]

(Maximum and average over all cells)
Conclusion and future work

• RL proves to have the qualities that allow us to tune the arbitration in favor of one or the other with respect to priorities/weights defined by the operator.

• By using a SON Coordinator we were able to intelligently decide when to accept/deny the requests of the SON instances in order to reach the desired tradeoff between the two SON functions w.r.t. to their corresponding targets (avoiding over-loads for MLB versus decreasing the number of connection failures and ping-pongs due to mobility for MRO).

• Simulation results show that the resulting KPIs reflect the operator priorities.

• Future work will focus on improving the scalability of our solution.
Questions