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ABSTRACT
In future generation networks one of the main focuses is on
automating the network optimization. This is done through
so called Self Organizing Network (SON) functions. A SON
instance is a realization of a SON function that governs
one or several cells. Several independent SON instances of
one or multiple SON functions are likely to generate con-
flicts. This raises the need for a SON COordinator (SONCO)
meant to solve these conflicts. In this paper we consider that
each SON function has one SON instance on every cell and
we present the design of a SONCO function for coordinat-
ing all these instances. The SONCO solves the conflicts
that appear on the update requests arbitrating (i.e. accept-
ing/denying the requests) so that it minimizes a predefined
regret. This regret takes into account the weights associ-
ated to the SON functions that rank their importance ac-
cording to the operator policies. We solve the problem in
a Reinforcement Learning (RL) framework as it offers the
possibility to improve the decisions based on past experi-
ences. We employ a state-aggregation technique to make
the state-space of our solution scale linearly with the num-
ber of cells. We provide a study case for two SON functions:
Mobility Load Balancing (MLB) tuning the Cell Individual
Offset(CIO) and Mobility Robustness Optimization (MRO)
tuning the CIO together with the handover hysteresis. The
proposed SONCO function solves the conflicts on the CIO
update requests. Numerical results show how the proposed
SONCO is able to favor either MLB or MRO requests ac-
cording to their associated weights.
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1. INTRODUCTION
The continuous growth of traffic demand is forcing oper-

ators to improve their network capabilities by technological
upgrades (LTE Advanced [11]), network densification and
introduction of Heterogeneous Networks (HetNets). These
upgrades lead to increased CAPital EXpenditures (CAPEX)
and OPerational EXpenditures (OPEX). In order to reduce
the costs, Release 8 of 3GPP has introduced Self Organizing
Networks (SON) that replace the costly human interven-
tion with automated mechanisms. These mechanisms are
usually classified into 3 categories Self-Configuration, Self-
Optimization and Self-Healing. We focus on the second cat-
egory which provides algorithms that offer a run-time op-
timization of the network. In the sequel SON will refer to
self-optimization.

In a real network we may find more than one SON function
(e.g. Mobility Load Balancing (MLB), Mobility Robustness
Optimization (MRO), etc.), each of which is trying to op-
timize some Key Performance Indicators (KPIs) by tuning
a set of parameters. This may cause different types of con-
flicts [6]. We therefore need a SON COordination (SONCO)
mechanism to deal with these conflicts. The SON instances
will not directly execute the desired parameter changes on
the network, instead they formulate requests to the SONCO
and it is the SONCO that decides which request will be ex-
ecuted.

The SONCO concept has been introduced fairly recently
with Release 10 of 3GPP [6]. There are two tracks followed
in finding coordination solutions. On the one hand the SON
instances are seen as black-boxes (i.e. there is no or limited
information on the algorithm and its inputs). The existing
work on this track has so far focused on solving conflicts
based on the instantaneous network conditions disregarding
the outcome of the past decisions: a coordination mecha-
nism which attributes priorities to the SON functions can
be found in [10] and [9]; decision trees are used in [3] and
[2]; in [8] the solution is based on restrictions on the value set
of the parameters; a per user optimization, is proposed in [4]
where priorities are attributed to users for handovers (HOs)
based on the weights attributed to the SON functions (MRO
and MLB). On the other hand the second track considers
the SON instances as white-boxes (i.e. the SONCO knows
the used algorithms and their characteristics, e.g. [5]), but
this is not always feasible for an operator-centric SONCO
especially in a multi-vendor environment.

In our work we follow the first track considering the de-
sign of an operator-centric SONCO that sees the SON in-
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stances as black-boxes, and unlike current approaches on
this track we take advantage of the information on the out-
comes of past decisions. Since the SON functions are consid-
ered as black-boxes there will be an inevitable uncertainty
on the impact of the SONCO’s decisions on the SON func-
tions and on the KPIs. In order to ensure a proper conflict
resolution and KPI performance, this uncertainty must be
minimized. For this purpose in [7] we proposed the Rein-
forcement Learning (RL) [12] framework where we can use
to some extent the information regarding the impact of our
past decisions. We employed RL making use of a centralized
value function with a state-space composed of all the possi-
ble configurations of a restricted set of network parameters.
The inconvenient in this case is that the state-space scales
exponentially with the number of cells. This paper repre-
sents a continuation of the work in [7] where now we focus
on a more scalable RL solution by using a distributed value
function. We summarize the contribution of this paper as
follows:

• we provide an operator-centric SONCO solution where
the SON instances are considered as black-boxes,

• we consider that the SON requests include an unhappi-
ness metric (an indicator of how unsatisfied the SON
instances are with the current parameter configura-
tion),

• we use a RL-based SONCO ,

• we show that in our conditions the action-value func-
tion can be simplified and expressed as a function of
the parameter configurations,

• we employ a state-aggregation technique to obtain a
distributed value function whose state-space scales lin-
early with the number of cells,

• we present a study case with MLB and MRO instan-
tiated on each and every cell.

The rest of this paper is organized as follows: Section 2
provides the system description presenting the scenario with
the SON instances. Section 3 outlines the Markov Decision
Process (MDP) underlying the RL-solution together with
the state aggregation and in Section 4 we introduce the RL
algorithm and we characterize its complexity. Simulation
results are included in Section 5 and Section 6 concludes the
paper.

2. SYSTEM DESCRIPTION
For simplicity we make the following notation convention:

for any variable X (be it parameter, update request, action,
etc.) if we index it by a set I the meaning is XI = (Xi)i∈I .

We consider a network segment composed of N cells (Fig.
1) indexed by n ∈ N = {1, ..., N}. Let Nn ⊂ N , ∀n ∈ N ,
be a set containing {n} and the neighbors of cell n. Denote
Nn = |Nn|, ∀n ∈ N .

For the network optimization we have Z SON functions
(e.g. MLB, MRO, etc.) indexed by z ∈ Z = {1, .., Z}. On
each cell we have one SON instance of each SON function.
The SON instances create update requests for changing the
network parameters that they tune.

We assume that on all cells there are K parameters (e.g.
CIO, Hysteresis, antenna tilt, etc.) tuned by the instances
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Figure 1: Functional Block Diagram:
SONCO↔SON interactions

of the SON functions indexed by k ∈ K = {1, ..,K}. Some
parameters, say the parameters

{
1, .., K̄

}
represent an im-

portant source of conflicts. We refer the reader to [6, Section
9.1.] for the selection of these parameters in a practical set-
tings. Denote K̄ =

{
1, .., K̄

}
.

Let Pt,n,k, ∀ (t, n, k) ∈ N × N × K, be the value of pa-
rameter k on cell n at time t and consider Pk to be the
set of possible values of Pt,n,k. Denote P =

∏
k∈KPk and

P̄ =
∏

k∈K̄Pk.
We assume that the SON instances send update requests

in order to modify the configurations of the parameters on
the hosting cell. An update request is a value u ∈ [−1; 1]
where: u = 0, u ∈ [−1; 0) and u ∈ (0; 1] is equivalent to a
request to maintain, decrease and increase the value of the
targeted parameter, respectively; |u| is a measure of how
unhappy the SON instance is with the current parameter
configuration (the closer to 1 the more unhappy the SON
instance is). If the SON instance does not tune a given
parameter than we consider the corresponding request to
be void. Let Ut,n,k,z, ∀ (t, n, k, z) ∈ N × N × K × Z, be
the update request sent at time t by the instance of the
SON function z that runs on cell n, to change parameter k
and consider Uk ⊂ [−1; 1] ∪ {void} to be the set of possible
values of Ut,n,k,z. Denote Ut = Ut,N ,K,Z , U =

∏
k∈K Uk

and Ū =
∏
k∈K̄ Uk. We leave the details of how the SON

instances should quantify their unhappiness for future work.

3. SON COORDINATION
The SON instances do not directly execute the desired

parameter changes in the network, instead update requests
are sent to a SONCO which decides if they are accepted
or denied. The accepted ones are immediately executed.
We design an operator-centric SONCO which sees the SON
instances as black-boxes (it does not know the input or the
algorithm inside). It only knows the update requests (Ut)
and the current parameter configuration of the network (Pt).
Based on this the SONCO has to find a reasonable solution
for conflict resolution.

We consider that all the SON instances are synchronized,
i.e. they do their KPI evaluation within a time interval T
and they send the requests simultaneously to the SONCO
at the end of the time interval (Fig. 1) . The SONCO has
the same time granularity T . It decides which requests are
accepted and which are denied, so the task of the SONCO is
to provide a reasonable conflict resolution. We use RL as it
allows us to keep track of our past decisions through value
functions which reflect how satisfied we were with a con-
figuration. The RL algorithm is based on Markov Decision
Process (MDP) that we describe in the next sub-section.
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3.1 MDP. General framework
We define the underlying MDP over all the network:

• State space: S = PN × UN·Z . A state s ∈ S is
written as s = (p, u) = (pN ,K, uN ,K,Z) contains the
parameter configurations and update requests.

• Action space: A = AN·K3 , A3 = {±1, 0}. An action
a ∈ A is composed of one NK-uplet. The action allows
to increase/decrease the value of a parameter only if
there exists at least one request to do so. Concretely
the impact on parameter k (∀k ∈ K) of cell n (∀n ∈ N )
is: 

↑ , if I{an,k= 1}I{∃z∈Z s.t. un,k,z>0} = 1

↓ , if I{an,k=−1}I{∃z∈Z s.t. un,k,z<0} = 1

l , otherwise

(1)

where ↑, ↓ and l mean increase, decrease and maintain
the value of the parameter, respectively. I{•}is the
indicator function (I{true} = 1,I{false} = 0).

• Transition kernel: T (s′|s, a) is the probability of
going into state s′ when the current state-action pair
is (s, a).

• Regret: r(s, a) is the regret associated to the state-
action pair (s, a).

A policy π is a transition kernel π on S × 2A, such that
π(s, {a}) represents the probability to take action a when
the current state is s.

Consider a stochastic process (St, At)t∈N ∈ S×A where St
and At represent the state and action at time t respectively.
Set St = (Pt, Ut).

For any policy π introduce a probability Pπ such that
(St, At)t∈N is a Markov chain under Pπ thus:

Pπ
(
St+1 = s′|St = s,At = a

)
= T

(
s′|s, a

)
, (2)

Pπ (At = a|St = s) = π (s, a) . (3)

Note that we shall simply use the notation P instead of Pπ
in eq. (2) i.e. when the probability does not depend on π.

3.2 Assumptions
Our transition kernel has some particular characteristics.

The future configuration of parameter k ∈ K on cell n ∈ N
(Pt+1,n,k) is a deterministic function of: the current value of
parameter k on cell n (Pt,n,k) together with the correspond-
ing update requests (Ut,n,k,Z) and action (At,n,k) .

Assumption 1 (kernel). There exists the determin-
istic functions gk : Pk × UZk × A3 → Pk, ∀k ∈ K, s.t.
Pt+1,n,k = gk (Pt,n,k, Ut,n,k,Z , At,n,k), ∀n ∈ N , ∀k ∈ K.

Furthermore the update request of the SON instance of
the SON function z ∈ Z concerning parameter k ∈ K on
cell n ∈ N (Ut+1,n,k,z) depends only on the parameter con-
figuration on the parameters K on cell n and its neighbors
(Pt+1,Nn,K).

Assumption 2 (kernel). ∀u′ ∈ UNZ , ∀p′ ∈ PN ,
∀ (n, k, z) ∈ N × K × Z , ∀ (s, a) ∈ S × A, we have
that: P

(
Ut+1,n,k,z = u′n,k,z|St = s,At = a, Pt+1 = p′

)
=

P
(
Ut+1,n,k,z = u′n,k,z|Pt+1,Nn,K = p′Nn,K

)
.

Given some state-action pair the regret is a function of the
unhappiness of the SON instances reflected in the succeeding
update requests concerning the conflicting parameters K̄.
We define the instantaneous regret at time t as the sum of
per cell instantaneous regrets: Rt =

∑
n∈N Rt,n where ∀n ∈

N , Rt,n = ρ
(
Ut+1,n,K̄,Z

)
for some function ρ : ŪZ → R.

Assumption 3 (regret). r (s, a) =
∑
n∈N rn (s, a)

where, ∀n ∈ N , rn (s, a) = E [Rt,n|St = s,At = a].

We now provide a specific form of ρ, relevant for the SON
coordination. Consider that ρ is a function of the absolute
values of the update requests reflecting a maximum regret
per cell , over all SON functions in Z and parameters in K̄
(say the target is to minimize the sum of the maximum per
cell regret). In other words :

ρ
(
un,K̄,Z

)
= max(k,z)∈K̄×Z |un,k,z| , ∀n ∈ N (4)

3.3 Value functions
For any policy π we introduce the state-value function

(V π) and the action-value function (Qπ):

V π(s) = Eπ
[∑∞

t=0 γ
tRt+1 |S0 = s

]
, (5)

Qπ(s, a) = Eπ
[∑∞

t=0 γ
tRt+1 |S0 = s,A0 = a

]
. (6)

where 0 ≤ γ < 1 is the regret sum discount factor and Eπ is
the expectation given that the followed policy is π.

The following proposition allows to simplify (6). In this
scope, we first define the following:

• ∀p ∈ PN ,∀n ∈ N , rn : PNn → R where rn (pNn,K) =
E
[
ρ
(
U1,n,K̄,Z

)
|P1,Nn,K = pNn,K

]
,

• g : S × A → PN where ∀ (p, u) ∈ S, ∀a ∈ A,
g ((p, u) , a) = (gk (pn,k, un,k,Z , an,k))(n,k)∈N×K ,

Proposition 1. For any policy π there exists a set of
functions Wπ

n : PN → R, ∀n ∈ N , s.t. for any (s, a) ∈
S × A, Qπ (s, a) =

∑
n∈N W

π
n (g (s, a)) . Moreover, Wπ

N
solves the following fixed point equation:

Wπ
n (p) = rn (pNn,K) + γ

∑
u∈UNZ

P [U1 = u|P1 = p] ·∑
a∈A

π ((p, u) , a) ·Wπ
n (g ((p, u) , a)) , ∀n ∈ N (7)

Proof. See Appendix A.

Remark 1 (optimal policy). If a policy π∗ minimizes
the value function ∀s ∈ S then it is said to be optimal [12].
Note that π∗ is known to be a deterministic policy i.e. (us-
ing a small notation abuse) π∗ : S → A and we have (see
[12]): π∗ (s) = arg maxaQ

∗ (s, a) (Q∗is the optimal action-
value function). Thus eq. (7) for the optimal policy can be
recovered by:

W ∗n (p) = rn (pNn,K) + γ
∑
u∈UNZ P [U1 = u|

P1 = p] ·W ∗n (p∗) , ∀n ∈ N ,
p∗ = g ((p, u) , a∗) ,
a∗ = π∗ (p, u) = arg mina∈AW

∗ (g ((p, u) , a))

(8)

Note that (W ∗n)n∈N has to be processed jointly as the policy
π∗ is centralized, i.e. it is a function of W ∗.
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3.4 State aggregation. Sub-optimal policy.
Although Proposition 1 allows to simplify (6) to a function

with a reduced state-space PN it still scales exponentially
with the number of cells N . Therefore in the sequel we set
to perform a state-aggregation, this one at the cost of pos-
sible performance loss. Note that Wπ

n depends on p mainly
through pNn,K̄ (i.e. the values of the conflicting parame-
ters on cell n and its neighbors). Thus we perform a state
aggregation as follows: let let Wn be the set of functions
Wπ
n : PN → R such that ∀p ∈ PN , Wπ

n (p) depends only on
pNn,K̄, namely:

Wn =
{
p 7→ F

(
pNn,K̄

)
: F ∈ RYn

}
(9)

where Yn = P̄Nn ; therefore instead of directly computing
W ∗N as the solution to (8) we aim to evaluate its projection
onto W =WN (≡ an approximation of W ∗N ) of the form:

f
(
pN ,K̄

)
=
∑
n∈N fn

(
pNn,K̄

)
(10)

for some fn ∈ RYn .

4. REINFORCEMENT LEARNING

4.1 Algorithm
First we define ḡ : P̄N × ŪNZ × ANK̄3 → P̄N where

ḡ ((p, u) , a) = (gk (pn,k, un,k,Z , an,k))(n,k)∈N×K̄.
We cannot directly calculate f as we only have partial

knowledge on the transition kernel, instead we use the flow-
ing recursion ∀n ∈ N :

ft+1,n

(
Pt,Nn,K̄

)
= (1− α) ft,n

(
Pt,Nn,K̄

)
+

α
(
Rt,n + γft,n

(
P̄t+1,Nn,K̄

))
P̄t+1 = ḡ

((
Pt,N ,K̄, Ut,N ,K̄,Z

)
, Āt
)

Āt = arg min
a∈{±1,0}NK̄

ft
(
ḡ
((
Pt,N ,K̄, Ut,N ,K̄,Z

)
, a
)) (11)

where Āt represents the optimal action concerning parame-
ters in K̄ based on ft. As we are using a fixed α, ft converges
in the mean to a fixed point of the so-called Bellman oper-
ator projected onto W [12]. Note that the ft is independent
of the parameters in Ǩ = K\K̄ (as intended from the state
aggregation), this allows us to always accept the requests on
these parameters as there are no conflicts on these parame-
ters:

At,N ,Ǩ = Ǎt =
(
I{∃z∈Z s.t. Ut,n,k,z>0}−

I{∃z∈Z s.t. Ut,n,k,z<0}
)

(n,k)∈N×Ǩ
.

(12)

For practical reasons we use an ε-greedy policy:

πt (St, {a}) =
(

(1− ε) I{aN ,K̄=Āt} +
ε

3NK

)
I{aN ,Ǩ=Ǎt}

(13)
The proposed algorithm is summarized in Alg. 1 . Func-

tion Init should be called for the initialization of the algo-
rithm and Function SONCO should be called every time
after receiving the requests of the SON instances.

Algorithm 1 (SONCO).
Function Init :
For all n ∈ N , initialize fn (p′) = 0,∀p′ ∈ P̄Nn

Function SONCO :
Observe current parameter configurations p and update

requests u, calculate regret rn = ρ
(
un,K̄,Z

)
, ∀n ∈ N

Calculate ā = arg minf
(
ḡ
((
pN ,K̄, uN ,K̄,Z

)
, a
))

and p̄ = ḡ
((
pN ,K̄, uN ,K̄,Z

)
, ā
)

For all n ∈ N
fn
(
pNn,K̄

)
← (1− α) fn

(
pNn,K̄

)
+ α

(
rn + γfn

(
p̄Nn,K̄

))
Choose action a using an ε-greedy policy , Take action a.

4.2 Complexity analysis
The optimal policy is usually obtained through Q-Learning

[12] with one SONCO that governs all cells. According
to the previous section the optimal policy can also be ob-
tained by learning W ∗ in (7). This allows us to tremen-
dously reduce the required state (and action) space from a

size of: ΨV = |S| · |A| = |P|N |U|NZ · |A3|NK to a size of

ΨW = N |P|N . Still, this solution scales exponentially with
N , but as mentioned we perform a state aggregation coming

to a state space size of Ψf =
∑
n∈N

∣∣P̄∣∣Nn , and one can see
that this scales linearly with the number of cells.

5. SIMULATION RESULTS

5.1 Simulation scenario
To demonstrate the concept we use 2 SON functions (Z =
{1, 2}): one MLB function (z = 1) and one MRO function
(z = 2). We consider 2 parameters (K = {1, 2}) of interest
the CIO (k = 1, tuned by both MLB and MRO instances)
and the HO hysteresis (k = 2, tuned only by MRO). The
parameter on which there are request conflicts is the CIO
thus say K̄ = {1}. For simulation purposes we present their
implementation in the sequel.

The CIO and the Hysteresis are two parameters that are
used in mobility management as follows: a User Equip-
ment (UE) that wants to transmit data will attach to cell
n0 = argmaxn∈N (RSRPn + Cn) where RSRPn is the Ref-
erence Signal Received Power from cell n and Cn is the CIO
of cell n; when attached to a serving cell nS (∀nS ∈ N )
a UE performs a HO to a target cell nT 6= nS if nT =
argmaxn∈N

(
RSRPn + Cn +HnS I{n=nS}

)
whereHnS is the

Hysteresis of cell nS .

5.1.1 Mobility Load Balancing
For the MLB SON function, the input (i.e. the optimized

metric) is the cell load (average number of occupied Physical
Resource Blocks - PRBs) of the hosting cell (the cell on
which the MLB instance runs). The tuned parameter is the
CIO (C) of the hosting cell. For cell n, the update request
of the MLB instance at time t for the CIO can be expressed
as:

Ut,n,1,1 = −ϕ (Lt,n; g1,m1) I{Lt,n>TH
ld}+

(ϕ (Lt,n; g2,m2)− 1) I{Lt,n<TL
ld} (14)

where Lt,nis the load on cell n at time t, THld and TLld are
fixed thresholds used by the MLB instance to trigger CIO
modification requests (THld > TLld); g is the steepness and m
the center of a S-shaped function of x with values in [0; 1]:

ϕ (x; g,m) = 1/
(

1 + e−g·(x−m)
)

. The MLB does not send

any request concerning the Hysteresis, therefore Ut,n,2,1 =
void, ∀ (t, n) ∈ N×N .
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5.1.2 Mobility Robustness Optimization
We consider a distributed implementation of the MRO

where the MRO instances running on neighboring cells com-
municate with each other. At time instant t, the MRO in-
stance running on cell n has the following metrics as input:
the number of HO ping pongs (NP

t,n), the number of too

late HOs (NL
t,n), the number of too early HOs (NE

t,n) and

the number of HOs to a wrong cell (NW
t,n) which all origi-

nate from cell n, together with the number of too late HOs
(NL∗

t,n) where cell n is the HO target cell. Since the MRO
tunes two parameters, the CIO (k = 1) and the Hystere-
sis (k = 2), the MRO instance of cell n at time t sends 2
simultaneous requests: one for each parameter. The one
regarding the Hysteresis can be expressed as follows:

Ut,n,2,2 = I{q2t,n=0} − I{q1t,n>0}(∈ {−1, 0, 1})
q1
t,n = I{NL

t,n>TH
L }I{NE

t,n<TL
E}I{NW

t,n<TL
W}I{NP

t,n<TL
P}

q2
t,n = I{NL

t,n≥TL
L} + I{NE

t,n≤TH
E }I{NW

t,n≤TH
W}I{NP

t,n≤TH
P }

(15)
where TH(·) and TL(·) are fixed thresholds used to trigger events

(TH(·) > TL(·)).
The request regarding the CIO can be expressed as fol-

lows:

Ut,n,1,2 =
(
ϕ
(
NL∗
t,n/THL∗; g3,m3

)
− 1
)
I{q3t,n=1}

q3
t,n = I{∃i∈N−n s.t. Ut,i→n=1}

(16)

where N−n = N\{n}. Ut,i→n is an intra-MRO message.
The MRO instance running on cell i sends to its neighbor-
ing MRO instances (j ∈ N−i) a message requesting a CIO
increase if needed:

Ut,i→j = I{q1t,i=0}I{q2t,i>0}I{q5t,i=0}I{j∈ξ(i)},
q5
t,i = I{NL

t,i≤TH
L }I{NE

t,i≤TH
E }I{NW

t,i≤TH
W}I{NP

t,i≤TH
P }

(17)

where ξ (i) is the set on cell from which there are Too Late
HOs to cell i. Increasing the CIO values of neighboring cells
reduces the number of too late HOs originating from them.

5.1.3 Scenario
The scenario is built on a network segment of N = 21

cells with wraparound (Fig. 2). The simulation details
are summarized in Table 1. We consider an elastic FTP-
like traffic with general background traffic arrival rate ηG
[Mb/s] together with an additional hotspots (HS) arrival
rate ηHS [Mb/s] (such that the resulting arrival rate in the
HS is ηG+ηHS). The user arrivals rates per area unit can be
easily obtained as: ρ(·)

[
UE/s/m2

]
= η(·)[Mb/s]/S(·)

[
m2
]
/

FS[Mb/UE] (S refers to the area and FS to the fixed file
size). We use Space Poisson Point Processes for the user
arrivals. A user arrives in the network, transmits its file and
then leaves the network. We consider 3 traffic HSs.

The SONCO and the SON (MLB and MRO) instances
are active during the entire simulation.

5.2 Simulation results
We consider a fixed file size of FS = 16[Mb/UE]. The

user arrival rates are ηG = 189[Mb/s] and ηHS = 90[Mb/s].
We try out several sets of weight pairs w = (wMLB , wMRO)
to see the impact on the KPIs. The total simulation duration
is 48 hours; the KPIs in the results are calculated based on
the statistics over the last 24 hours period.

Table 1: Simulation parameters
Category Parameter Value

Network Inter Site Distance 1732 m
Channel
model-
ing

Carrier frequency 2 GHz
Bandwidth 10 MHz
cell TX Power 46 dBm
Propagation Model 3GPP Case 3 [1]
Channel Model MIMO 2× 2

Mobility HO Time To Trigger 160 ms

SON
instances

CIOs (P1[dB]) {−12,−8, ..., 0}
HO Hystereses (P2 [dB]) {0, 1, ..., 12}
Update requests (U(·)) [−1; 1] ∪ {void}
Time window T 5 min(
TLld;THld

)
(0.3; 0.8)(

TLL;THL
)
,
(
TLP ;THP

)
,THL∗ (2; 8),(2.5; 10),6(

TLE ;THE
)

=
(
TLW ;THW

)
(∞;∞) ≡ off

(g1;m1), (g2;m2) (30; 0.9), (5;−0.2)
(g3;m3) (5; 1.5)

SONCO (α; γ; ε) (0.2; 0.8; 0.1)
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Figure 2: Network topology

In Figures 3, 4 and 5 we plot the maximum and the aver-
age (over all cells) of the time-averaged cell load, the time-
averaged number of too late HOs and the time-averaged
number of ping-pongs, respectively.

In Fig. 3 one can see that a better load balancing is
achieved by giving bigger weights to the MLB instances.
Basically the overloaded cells (the ones containing the traf-
fic HSs) are allowed to off-load more. On the other hand
giving a bigger priority to the MRO prevents these cells
from off-loading as much as the MLB would want (i.e. to
decrease the CIO) causing the maximum load to degrade by
up to 9.9%. The HO borders are pushed further away from
the overloaded cells. Thus the number of Too Late HOs to-
wards the overloaded cells from neighboring base stations is
reduced at the cost of slightly increasing the number of Too
Late HO from these cells towards their neighbors. Overall
we reduce the maximum number of too late HOs by up to
28.7% (Fig. 4).

There are very few Too Early HOs and Wrong Cell HO,
so they are not significant. Typically the number of ping
pongs depends mostly on the Hystereses, but as we can see
in Fig. 5 they are also impacted by the weights. If we reduce
the number of too late HOs by means of CIO configurations
then the MRO has more flexibility in tuning the Hysteresis
in order to further reduce the number of ping-pongs (at most
33.6%).
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Figure 3: Average Load

0

0,2

0,4

0,6

0,8

Max. Av.

N
o

. 
T

LH
O

s 
[#

/m
in

]

w=(8,1)

w=(4,1)

w=(1,1)

w=(1,4)

w=(1,8)

Figure 4: Average Number of Too Late HOs

6. CONCLUSIONS AND FUTURE WORK
In dealing with the conflict resolution between the re-

quests of the SON instances RL proves to have the qualities
that allow us to intelligently decide when to accept/deny
these requests in order to tune the arbitration according to
the operator’s preferences (avoiding over-loads for MLB ver-
sus decreasing the number of connection failures and ping-
pongs due to mobility for MRO). State aggregation allows
us to make the state-space scale linearly with the number of
cells. Simulation results show that the resulting KPIs reflect
the operator preferences. Future work will focus on further
improving the scalability of our solution and analyzing other
regret functions.
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APPENDIX
A. PROOF OF PROPOSITION 1

Proof. To simplify (6) we fist calculate (∀t ∈ N):

P (Ut+1 = u′|S0 = s,A0 = a, P1 = p′)
=
∑
u′′ P (Ut+1 = u′, U1 = u′′|S0 = s,A0 = a, P1 = p′)

=
∑
u′′ P (Ut+1 = u′|S1 = (p′, u′′) , S0 = s,A0 = a) ·

P (U1 = u′′|S0 = s,A0 = a, P1 = p′)
(>)
=
∑
u′′ P (Ut+1 = u′|S1 = (p′, u′′)) ·

P (U1 = u′′|P1 = p′)
= P (Ut+1 = u′|P1 = p′)

(18)
where (>) comes from using the Markov property (on the
first term) and Assumption 2 (on the second term).

Define ρc : UNK → R where ρc (u) =
∑
n∈N ρ

(
un,K̄,Z

)
.

From (6) we have:

Qπ (s, a) = Eπ
[∑∞

t=0 γ
tRt+1|S0 = s,A0 = a

]
= Eπ

[∑∞
t=0 γ

tρc (Ut+1) |S0 = s,A0 = a
]

A1
= Eπ

[∑∞
t=0 γ

tρc (Ut+1) |P1 = g (s, a) ,
S0 = s,A0 = a]

(18)
= Eπ

[∑∞
t=0 γ

tρc (Ut+1) |P1 = g (s, a)
]

= Eπ
[∑∞

t=0 γ
t∑

n∈N ρ
(
Ut+1,n,K̄,Z

)
|P1 = p

]
= Wπ (p) =

∑
n∈N W

π
n (p)

(19)
where Wπ

n (p) = Eπ
[∑∞

t=0 γ
tρ
(
Ut+1,n,K̄,Z

)
|P1 = p

]
, ∀n ∈

N , for p = g (s, a). We can further develop Wπ
n (p), ∀n ∈ N ,

∀p ∈ PN , as follows:

Wπ
n (p) = E

[
ρ
(
U1,n,K̄,Z

)
|P1 = p

]
+

Eπ
[∑

t=1 γ
tρ
(
Ut+1,n,K̄,Z

)
|P1 = p

]
A2
= rn (pNn,K) + γEπ [Wπ

n (P2) |P1 = p] .

(20)

The conclusion of Proposition 1 for a policy π follows sim-
ply by detailing Eπ.
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